Efficiently navigating a random Delaunay triangulation
نویسندگان
چکیده
Planar graph navigation is an important problem with significant implications to both point location in geometric data structures and routing in networks. However, whilst a number of algorithms and existence proofs have been proposed, very little analysis is available for the properties of the paths generated and the computational resources required to generate them under a random distribution hypothesis for the input. In this paper we analyse a new deterministic planar navigation algorithm with constant competitiveness which follows vertex adjacencies in the Delaunay triangulation. We call this strategy cone walk. We prove that given n uniform points in a smooth convex domain of unit area, and for any start point z and query point q; cone walk applied to z and q will access at most O(|zq|√n + log n) sites with complexity O(|zq|√n log log n+ log n) with probability tending to 1 as n goes to infinity. We additionally show that in this model, cone walk is (log n)-memoryless with high probability for any pair of start and query point in the domain, for any positive ξ. We take special care throughout to ensure our bounds are valid even when the query points are arbitrarily close to the border.
منابع مشابه
Improved initialisation for centroidal Voronoi tessellation and optimal Delaunay triangulation
Centroidal Voronoi tessellations and optimal Delaunay triangulations can be approximated efficiently by non-linear optimisation algorithms. This paper demonstrates that the point distribution used to initialise the optimisation algorithms is important. Compared to conventional random initialisation, certain low-discrepancy point distributions help convergence towards more spatially regular resu...
متن کاملRandom sampling of a cylinder yields a not so nasty Delaunay triangulation
We prove that the expected size of the 3D Delaunay triangulation of n points evenly distributed on a cylinder is Θ(n log n). This shows that the n √ n behavior of the cylinder-example of Erickson [9] is pathological. Key-words: Delaunay triangulation, random distribution, random sample, surface reconstruction Ce travail préliminaire a été joint avec un travail parallèle de Jeff Erickson et sera...
متن کاملTowards a Definition of Higher Order Constrained Delaunay Triangulations
When a triangulation of a set of points and edges is required, the constrained Delaunay triangulation is often the preferred choice because of its well-shaped triangles. However, in applications like terrain modeling, it is sometimes necessary to have flexibility to optimize some other aspect of the triangulation, while still having nicely-shaped triangles and including a set of constraints. Hi...
متن کاملConstruction of the segment Delaunay triangulation by a flip algorithm (Construction de la triangulation de Delaunay de segments par un algorithme de flip)
Given a set S of points in the plane, a triangulation of S is a partition of the convex hull of S into triangles whose vertices are the points of S. A triangulation of S is said to be Delaunay if no point of S lies inside the triangles’ circumcircles. In this thesis, we study a generalization of these notions to a set S of disjoint segments in the plane. At first, we define a new family of diag...
متن کاملFully Dynamic Constrained Delaunay Triangulations
We present algorithms for the efficient insertion and removal of constraints in Delaunay Triangulations. Constraints are considered to be points or any kind of polygonal lines. Degenerations such as edge overlapping, self-intersections or duplicated points are allowed and are automatically detected and fixed on line. As a result, a fully Dynamic Constrained Delaunay Triangulation is achieved, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 49 شماره
صفحات -
تاریخ انتشار 2016